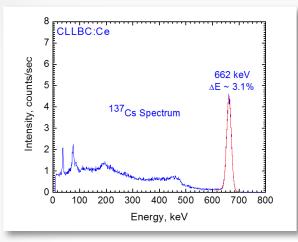
Gamma-Neutron Scintillator Properties

CLLBC

Dual Mode Detection

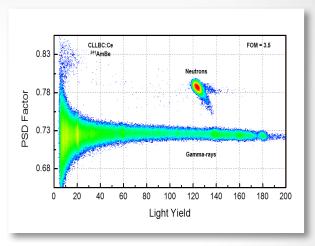
Room Temperature Operation

Single Scintillation Material



2.0" x 2.0" CLLBC Scintillator

Gamma-Neutron Scintillation Detector



CLLBC

The new scintillator Cs_LiLa(Br,Cl)::Ce (CLLBC) is a practical gamma-neutron detector for use as a replacement for both high energy resolution gamma-ray detectors and high pressure Helium-3 tubes for neutron detection. The ease of using pulse height as well as pulse shape discrimination for neutron detection, combined with gamma-ray energy resolution better than NaI:TI or CsI:TI and in the working range of LaBr₃:Ce, make the CLLBC detector an ideal solution for several classes of handheld instruments, including spectroscopic personal radiation detectors (SPRDs) and radionuclide identification devices (RIDs). Other applications requiring gamma-neutron detection can also benefit from using CLLBC.

2.0" CLLBC - Pulse Shape Discrimination

Instrument manufacturers will also find the simplicity and compactness of implementing a dual-mode detector to be advantageous. The neutron cross-section of 95% ⁶Li-enriched CLLBC is 2.5 times that of ³He (10 atmospheres), compared on a volume basis. Due to its highly proportional response, energy resolution for 662 keV gamma rays is typically better than 3.5% using CLLBC (a factor of two improvement over Nal:Tl), depending on the configuration of the detector and photosensor.

CLLBC can be packaged with a termperature sensor and a SiPM array. The resulting CLLBC-SiPM sensor offers a compact package, low voltage requirements, and a reliable signal for neutron detection and gamma-ray spectroscopy.

Material	Cs ₂ LiLa(Br,Cl) ₆ :Ce
Melting Point	540°C
Density	4 g/cm ³
Crystal Structure	Cubic
Cleavage Planes	None
Water Solubility	Hygroscopic
Emission Spectral Range	350 – 450 nm

Peak Scintillation Wavelength	410 nm
Decay Constants (Ce3+, Ce-STE)	115 ns, 500 ns,1500 ns
Scintillation Light Yield	45,000 ph/MeV
GEE for Thermal Neutrons	3.1 MeV
X-ray Absorption Coef. at 100 KeV	5.49 cm ⁻¹
X-ray Absorption Coef. at 662 KeV	0.298 cm ⁻¹
Radiation Length	2.45 cm

